

HiPhi
 Three-dimensional Electrostatics

Field Precision

Copyright 2001
Internet: www.fieldp.com
E Mail: techninfo@fieldp.com
PO Box 13595, Albuquerque, New Mexico 87192 U.S.A.
Telephone: 505-220-3975, FAX: 505-294-0222

Figure 1.1. Geometry defined by the MetaMesh script WALKTHRU . MIN

A quick way to understand the solution procedure is to step through an

1.2. Test run

 example. The calculation we shall consider describes a spherical highvoltage electrode on a nylon support at an offset position inside a rectangular grounded chamber. The calculation utilizes a symmetry boundary to minimize the run time. Figure 1.1 shows the geometry of the electrode and support. The MetaMesh script file is listed in Table 1.1.
Table 1.1. MetaMesh script file for WALKTHRU.MIN

```
* File WALKTHRU.MIN
GLOBAL
    XMesh
        0.00 9.00 N 90
    End
    YMesh
        0.00 3.00 N 30
    End
    ZMesh
        0.00 6.00 N 60
    End
    RegName 1 Solution volume
    RegName 2 Dielectric support
    RegName 3 Spherical electrode
    RegName 4 Grounded boundary
END
PART 1
* Solution region
    Type Box
    Region 1
    Fab 18.0 6.00 12.00
END
PART 2
* Dielectric support
    Type Cylinder
    Region 2
    Fab 0.80 4.00
    Shift 4.00 0.00 0.00
    Surface Region 1
END
PART 3
* Spherical electrode
    Type Sphere
    Region 3
    Fab 1.5
    Shift 4.00 0.00 3.00
    Surface Region 1
    Surface Part 2
END
```

PART 4

* Boundary, upper Y Type BoundYUp Region 4
END
PART 5
* Boundary, upper X
Type BoundXUp
Region 4
END
PART 6
* Boundary, lower X
Type BoundXDn
Region 4
END
PART 7
* Boundary, upper Z
Type BoundZUp
Region 4
END
PART 8
* Boundary, lower Z
Type BoundZDn
Region 4
END

ENDFILE

To prepare move the example files WALKTHRU . MIN, WALKTHRU. HIN and WALKTHRU. SCR to the working directory (i.e., \AMAZE $\backslash B U F F E R$). Run AMAZE. EXE (the AMaze program launcher) and click on Set data directory. Move to \AMAZE \backslash BUFFER and click $O K$. Then launch MetaMesh. Pick Load MIN file from the File menu. If AMaze is set up correctly, the program transfers to \AMAZE $\backslash B U F F E R$ and the file WALKTHRU. HIN appears in the dialog. Open the file.

Next, pick Process mesh. The program lists information on the conversion process on the screen and in the file WALKTHRU. MLS. Click the right mouse button to continue. Finally, pick Save mesh from the File menu. At this point, you can use the plot functions of MetaMesh to examine the geometry of the mesh or proceed to the electrostatic solution.

Run HiPhi from AMaze. After the program starts, pick Run from the main menu or use the run tool. In the dialog, pick the file WALKTHRU. EIN. Table 1.2 shows the contents of the file. HiPhi calculates the element matrices and coupling coefficient necessary for the finite-element solution and then proceeds with the relaxation process. The program creates the binary output file WALKTHRU. HOU and the ASCII listing file WALKTHRU. HLS. The run takes about 60 seconds on a 1.7 GHz Pentium 4 computer. You can use the Edit listing file command to inspect WALKTHRU.ELS.

Table 2.1 HiPhi script WALKTHRU.HIN

```
* File WALKTHRU.HIN
ResTarget = 1.0E-7
MaxCycle = 1000
DUnit = 100.0
NCheck = 25
* Solution volume
Epsi(1) = 1.0
* Dielectric support
Epsi(2) = 3.5
* Spherical electrode
Potential(3) = 25000.0
* Boundary
Potential(4) = 0.0
ENDFILE
```


Figure 1.2. Slice plot normal to the x axis at position $x=$ 4.05

Following a successful solution, start the program PhiView. Pick Load solution file from the File menu or click on the tool. Pick the file WALKTHRU. HOU in the dialog. PhiView can generate a wide variety of 2D and 3D plots. Chapters 10, 11 and 12 give detailed information. Here, we will look at two examples. To create the 2D equipotential plot of Fig. 1.2, go to the Slice plot menu. On the Change view popup menu, pick the command Set slice plane properties. Click the X Axis button, move the slider to $x=4.05$, and then click OK. You should see the equipotential plot of Fig. 1.2. Note the slope discontinuity of equipotential lines at the edge of the dielectric.

PhiView also has 3D plot capabilities. Return to the main menu and click on Surface plots. On the Plot control popup menu click on Surface plot style. The default plot shows the variation of electric field in a plane

Figure 1.3. Working environment of PhiView showing a surface plot of $|\mathbf{E}|$ in a normal plane.
normal to z. Click the button for the y axis, move the slider to $y=0.0$ and click $O K$. Next, we shall add the spherical electrode to the plot for reference. On the Plot control menu click on Displayed regions. Activate Region 3 and click OK. To get a better view, we need to rotate the plot. On the Adjust view menu click on Set surface view. Set the view angles to approximately $\theta_{\mathrm{x}}=-80.0^{\circ}, \theta_{\mathrm{y}}=0.0^{\circ}$ and $\theta_{\mathrm{z}}=-150.0^{\circ}$. With some tuneup using the zoom and displacement tools, you should see the plot of Fig. 1.3. The figure shows the variation of $|\mathrm{E}|$ over the symmetry. The dielectric support is at the bottom.

You can experiment with commands to move through the solution space or to change the style of the plot. You can also check the Hardcopy or Plot file functions in the Export plot popup menu. Remember to set the correct
printer in Windows before using the Default printer command..
Plots are pleasing, but the ultimate aim of the program is to generate numbers. Return to the main menu and click on Run script in the File menu. In the dialog, pick the file WALKTHRU. SCR. There is a delay while PhiView performs a extensive analysis. To begin, we shall inspect the instructions in the data script. In the File menu click on Edit script and choose WALKTHRU. SCR. The internal program editor loads and shows the following content:

```
INPUT WalkThru.HOU
OUTPUT WallThru
FULLANALYSIS
REGION 3
ENDFILE
```

The first statement ensure that the proper solution file is loaded and second statement opens a data file to write the results. The command FullAnalysis instructs the program to take volume integrals over all regions of the solution volume, while the command Region 3 initiates volume and surface integrals over the electrode region. To inspect the new file WALKTHRU. DAT click on the command Edit data file in the File menu. Choose the file and click OK.

Table 1.3 summarizes results listed in the file. HiPhi has computed the volume of regions by taking Gaussian integrals over individual hexahedron elements. The computed volume of the spherical electrode (Region 3) is $7.0657 \times 10^{-6} \mathrm{~m}^{3}$, close to the theoretical value of the halfsphere of radius $1.5 \mathrm{~cm}: 7.0686 \times 10^{-6} \mathrm{~m}^{3}$. The computed total electrostatic field energy is $4.8640 \times 10^{-4} \mathrm{~J}$ at an applied potential of $2.5 \times$ $10^{4} \mathrm{~V}$. Using the expression $E=C V^{2} / 2$, we find that the capacitance of the half-assembly is 1.5565 pF . Next consider the surface integral values determined in response to the command Region 3 . The calculated surface area is $1.4271 \times 10^{-3} \mathrm{~m}^{2}$ while the theoretical prediction is 1.4137×10^{-3} m^{2}. We can also double-check the capacitance calculation using the surface charge value determined by integrating the normal electric field over the surface of the electrode. The calculated result is 3.9776×10^{-8} coulombs. The formula $C=Q / V$ gives the capacitance as 1.5910 pF , within 2% of the volume integral result.

Table 1.3. Information in the file WALKTHRU.DAT

```
--------- Global analysis of the solution volume ----------
    Fixed potential regions
    NReg Potential Volume
            (V) (m3)
    =============================
        3 2.50000E+04 7.06573E-06
        4 0.00000E+00 0.00000E+00
            Dielectric regions
    NReg Epsilon (relative)
=========================================================================
    1 1.00000E+00 0.00000E+00 1.22847E+01 
    2 3.50000E+00 0.00000E+00 1.72222E+05 2.94126E+06 6.33973E-05
```

 Global field energy: 4.86402E-04 J
 Global volume: 1.61998E-04
 Analysis of Region Number 3
 Fixed potential: \(2.50000 \mathrm{E}+04\)
 Volume integral quantities
 Volume: 7.06573E-06 (m3)
 Surface integral quantities
 Surface area: 1.42706E-03 (m2)
 Induced change: \(3.97756 \mathrm{E}-08\) (coulombs)